\qquad

EE/EX-3003-CBGS

B.E. III Semester

Examination, December 2020

Choice Based Grading System (CBGS)

Network Analysis
Time : Three Hours
Maximum Marks: 70
Note: i) Attempt any five questions.
ii) All questions carry equal marks.

1. a) Consider the R-C parallel circuit shown in fig. 1 excited by a d.c. current source of 10 A . Determine the voltage across the capacitor. Assume the initial voltage across the capacitor as 2 V .

Fig. 1
b) At $t=0$, S is closed in the circuit of fig. 2 find $_{c}(t)$ and $i_{c}(t)$. All initial conditions are zero.

Fig. 2
2. a) Find $i(t)$ for $t>0$ in the circuit shown in fig. 3 switch S is opened at $t=0$.

S

b) In the circuit shown in fig. 4, the switch S is closed at $t=0$ connecting a source e^{t} to the RC circuit. At $t=0$ it is observed that the capacitor voltage has the value $v_{c}(0)=0.5 \mathrm{~V}$. Determine $v_{2}(t)$.

Fig. 4
3. a) Verify recine ocity theorem for the circuit shown in fig.5.

Fig. 5
b) Find the Thevenin equivalent circuit at terminal AB of the circuit given in fig. $6.60 \angle 60^{\circ} \mathrm{V}$

4. Calculate the current in the $\$ \square$ resistor of the circuit of fig. 7 by
i) Thevenin theorem
ii) Superposition theorem

Fig. 7
5. a) Determine the value of R_{E} to be connected across AB in fig. 8 for maximum power transfer. Also calculate the maximum power absorbed by the R

Fig. 8
b) If $v(t)$ is a pulse as shown is applied to the circuit of Fig.9, determine thefcurrent $i(t)$

6. Find the trigonometric Fourier series for the waveform shown in fig. 10(a) and fig. 10(b).

(a)

(b)
7. a) Obtain the z-parameters of the network shown in Fig. 11

Fig. 11
b) Determine the z-parameters of the network shown in Fig. 12.

8. Write short notes on any two of the following:
a) Parallel resgiance.
b) Initial and
c) Hybri, parameters.

